Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
BMC Bioinformatics ; 24(1): 141, 2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2291511

ABSTRACT

BACKGROUND: Inflammatory mediators play havoc in several diseases including the novel Coronavirus disease 2019 (COVID-19) and generally correlate with the severity of the disease. Interleukin-13 (IL-13), is a pleiotropic cytokine that is known to be associated with airway inflammation in asthma and reactive airway diseases, in neoplastic and autoimmune diseases. Interestingly, the recent association of IL-13 with COVID-19 severity has sparked interest in this cytokine. Therefore characterization of new molecules which can regulate IL-13 induction might lead to novel therapeutics. RESULTS: Here, we present an improved prediction of IL-13-inducing peptides. The positive and negative datasets were obtained from a recent study (IL13Pred) and the Pfeature algorithm was used to compute features for the peptides. As compared to the state-of-the-art which used the regularization based feature selection technique (linear support vector classifier with the L1 penalty), we used a multivariate feature selection technique (minimum redundancy maximum relevance) to obtain non-redundant and highly relevant features. In the proposed study (improved IL-13 prediction (iIL13Pred)), the use of the mRMR feature selection method is instrumental in choosing the most discriminatory features of IL-13-inducing peptides with improved performance. We investigated seven common machine learning classifiers including Decision Tree, Gaussian Naïve Bayes, k-Nearest Neighbour, Logistic Regression, Support Vector Machine, Random Forest, and extreme gradient boosting to efficiently classify IL-13-inducing peptides. We report improved AUC, and MCC scores of 0.83 and 0.33 on validation data as compared to the current method. CONCLUSIONS: Extensive benchmarking experiments suggest that the proposed method (iIL13Pred) could provide improved performance metrics in terms of sensitivity, specificity, accuracy, the area under the curve - receiver operating characteristics (AUCROC) and Matthews correlation coefficient (MCC) than the existing state-of-the-art approach (IL13Pred) on the validation dataset and an external dataset comprising of experimentally validated IL-13-inducing peptides. Additionally, the experiments were performed with an increased number of experimentally validated training datasets to obtain a more robust model. A user-friendly web server ( www.soodlab.com/iil13pred ) is also designed to facilitate rapid screening of IL-13-inducing peptides.


Subject(s)
COVID-19 , Interleukin-13 , Humans , Bayes Theorem , Peptides , Machine Learning
2.
J Allergy Clin Immunol ; 152(1): 56-67, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2257484

ABSTRACT

BACKGROUND: Despite well-known susceptibilities to other respiratory viral infections, individuals with allergic asthma have shown reduced susceptibility to severe coronavirus disease 2019 (COVID-19). OBJECTIVE: We sought to identify mechanisms whereby type 2 inflammation in the airway protects against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by using bronchial airway epithelial cells (AECs) from aeroallergen-sensitized children with asthma and healthy nonsensitized children. METHODS: We measured SARS-CoV-2 replication and ACE2 protein and performed bulk and single-cell RNA sequencing of ex vivo infected AEC samples with SARS-CoV-2 infection and with or without IL-13 treatment. RESULTS: We observed that viral replication was lower in AECs from children with allergic asthma than those from in healthy nonsensitized children and that IL-13 treatment reduced viral replication only in children with allergic asthma and not in healthy children. Lower viral transcript levels were associated with a downregulation of functional pathways of the ciliated epithelium related to differentiation as well as cilia and axoneme production and function, rather than lower ACE2 expression or increases in goblet cells or mucus secretion pathways. Moreover, single-cell RNA sequencing identified specific subsets of relatively undifferentiated ciliated epithelium (which are common in allergic asthma and highly responsive to IL-13) that directly accounted for impaired viral replication. CONCLUSION: Our results identify a novel mechanism of innate protection against SARS-CoV-2 in allergic asthma that provides important molecular and clinical insights during the ongoing COVID-19 pandemic.


Subject(s)
Asthma , COVID-19 , Child , Humans , SARS-CoV-2 , Interleukin-13 , Pandemics , Asthma/epidemiology , Inflammation , Epithelial Cells/metabolism , Epithelium/metabolism
3.
Front Immunol ; 13: 945063, 2022.
Article in English | MEDLINE | ID: covidwho-2032774

ABSTRACT

Type 2 helper T (Th2) cells, a subset of CD4+ T cells, play an important role in the host defense against pathogens and allergens by producing Th2 cytokines, such as interleukin-4 (IL-4), IL-5, and IL-13, to trigger inflammatory responses. Emerging evidence reveals that Th2 cells also contribute to the repair of injured tissues after inflammatory reactions. However, when the tissue repair process becomes chronic, excessive, or uncontrolled, pathological fibrosis is induced, leading to organ failure and death. Thus, proper control of Th2 cells is needed for complete tissue repair without the induction of fibrosis. Recently, the existence of pathogenic Th2 (Tpath2) cells has been revealed. Tpath2 cells produce large amounts of Th2 cytokines and induce type 2 inflammation when activated by antigen exposure or tissue injury. In recent studies, Tpath2 cells are suggested to play a central role in the induction of type 2 inflammation whereas the role of Tpath2 cells in tissue repair and fibrosis has been less reported in comparison to conventional Th2 cells. In this review, we discuss the roles of conventional Th2 cells and pathogenic Th2 cells in the sequence of tissue inflammation, repair, and fibrosis.


Subject(s)
Cytokines , Th2 Cells , Allergens , Fibrosis , Humans , Inflammation
4.
Open Forum Infect Dis ; 9(8): ofac343, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1992285

ABSTRACT

Background: Based on studies implicating the type 2 cytokine interleukin 13 (IL-13) as a potential contributor to critical coronavirus disease 2019 (COVID-19), this trial was designed as an early phase 2 study to assess dupilumab, a monoclonal antibody that blocks IL-13 and interleukin 4 signaling, for treatment of inpatients with COVID-19. Methods: We conducted a phase 2a randomized, double-blind, placebo-controlled trial (NCT04920916) to assess the safety and efficacy of dupilumab plus standard of care vs placebo plus standard of care in mitigating respiratory failure and death in those hospitalized with COVID-19. Results: Forty eligible subjects were enrolled from June to November of 2021. There was no statistically significant difference in adverse events nor in the primary endpoint of ventilator-free survival at day 28 between study arms. However, for the secondary endpoint of mortality at day 60, there were 2 deaths in the dupilumab group compared with 5 deaths in the placebo group (60-day survival: 89.5% vs 76.2%; adjusted hazard ratio [HR], 0.05 [95% confidence interval {CI}, .004-.72]; P = .03). Among subjects who were not in the intensive care unit (ICU) at randomization, 3 subjects in the dupilumab arm were admitted to the ICU compared to 6 in the placebo arm (17.7% vs 37.5%; adjusted HR, 0.44 [95% CI, .09-2.09]; P = .30). Last, we found evidence of type 2 signaling blockade in the dupilumab group through analysis of immune biomarkers over time. Conclusions: Although the primary outcome of day 28 ventilator-free survival was not reached, adverse events were not observed and survival was higher in the dupilumab group by day 60. Clinical Trials Registration: NCT04920916.

5.
Am J Respir Cell Mol Biol ; 66(4): 391-401, 2022 04.
Article in English | MEDLINE | ID: covidwho-1775050

ABSTRACT

Asthma is associated with chronic changes in the airway epithelium, a key target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many epithelial changes, including goblet cell metaplasia, are driven by the type 2 cytokine IL-13, but the effects of IL-13 on SARS-CoV-2 infection are unknown. We found that IL-13 stimulation of differentiated human bronchial epithelial cells (HBECs) cultured at air-liquid interface reduced viral RNA recovered from SARS-CoV-2-infected cells and decreased double-stranded RNA, a marker of viral replication, to below the limit of detection in our assay. An intact mucus gel reduced SARS-CoV-2 infection of unstimulated cells, but neither a mucus gel nor SPDEF, which is required for goblet cell metaplasia, were required for the antiviral effects of IL-13. Bulk RNA sequencing revealed that IL-13 regulated 41 of 332 (12%) mRNAs encoding SARS-CoV-2-associated proteins that were detected in HBECs (>1.5-fold change; false discovery rate < 0.05). Although both IL-13 and IFN-α each inhibit SARS-CoV-2 infection, their transcriptional effects differed markedly. Single-cell RNA sequencing revealed cell type-specific differences in SARS-CoV-2-associated gene expression and IL-13 responses. Many IL-13-induced gene expression changes were seen in airway epithelium from individuals with type 2 asthma and chronic obstructive pulmonary disease. IL-13 effects on airway epithelial cells may protect individuals with type 2 asthma from COVID-19 and could lead to identification of novel strategies for reducing SARS-CoV-2 infection.


Subject(s)
Asthma , COVID-19 , Cells, Cultured , Epithelial Cells , Epithelium , Humans , Interleukin-13/pharmacology , SARS-CoV-2
6.
Proc Natl Acad Sci U S A ; 119(16): e2119680119, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1768985

ABSTRACT

Muco-obstructive lung diseases are typically associated with high risks of COVID-19 severity; however, allergic asthma showed reduced susceptibility. To investigate viral spread, primary human airway epithelial (HAE) cell cultures were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and host­virus interactions were examined via electron microscopy, immunohistochemistry, RNA in situ hybridization, and gene expression analyses. In HAE cell cultures, angiotensin-converting enzyme 2 (ACE2) expression governed cell tropism and viral load and was up-regulated by infection. Electron microscopy identified intense viral egress from infected ciliated cells and severe cytopathogenesis, culminating in the shedding of ciliated cells packed with virions, providing a large viral reservoir for spread and transmission. Intracellular stores of MUC5AC, a major airway mucin involved in asthma, were rapidly depleted, likely to trap viruses. To mimic asthmatic airways, HAE cells were treated with interleukin-13 (IL-13), which reduced viral titers, viral messenger RNA, and cell shedding, and significantly diminished the number of infected cells. Although mucus hyperproduction played a shielding role, IL-13­treated cells maintained a degree of protection despite the removal of mucus. Using Gene Expression Omnibus databases, bulk RNA-sequencing analyses revealed that IL-13 up-regulated genes controlling glycoprotein synthesis, ion transport, and antiviral processes (albeit not the typical interferon-induced genes) and down-regulated genes involved in cilial function and ribosomal processing. More precisely, we showed that IL-13 reduced ACE2 expression, intracellular viral load, and cell-to-cell transmission while increasing the cilial keratan sulfate coating. In conclusion, intense viral and cell shedding caused by SARS-CoV-2 infection was attenuated by IL-13, which affected viral entry, replication, and spread.


Subject(s)
COVID-19 , Interleukin-13 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Interleukin-13/metabolism , Respiratory System/virology
7.
Cells ; 11(5)2022 02 25.
Article in English | MEDLINE | ID: covidwho-1742338

ABSTRACT

Programmed death-ligand 1 (PD-L1) plays a key role in maintaining immune tolerance and also in immune evasion of cancers and pathogens. Though the identity of stimuli that induce PD-L1 in various human innate cells and their function are relatively well studied, data on the basophils remain scarce. In this study, we have identified one of the factors, such as IFN-γ, that induces PD-L1 expression in human basophils. Interestingly, we found that basophil priming by IL-3 is indispensable for IFN-γ-induced PD-L1 expression in human basophils. However, priming by other cytokines including granulocyte-macrophage colony-stimulating factor (GM-CSF) and thymic stromal lymphopoietin (TSLP) was dispensable. Analyses of a published microarray data set on IL-3-treated basophils indicated that IL-3 enhances IFNGR2, one of the chains of the IFNGR heterodimer complex, and CD274, thus providing a mechanistic insight into the role of IL-3 priming in IFN-γ-induced PD-L1 expression in human basophils.


Subject(s)
B7-H1 Antigen , Basophils , Humans , Interferon-gamma/pharmacology , Interleukin-3/pharmacology , Leukocyte Count
8.
Front Immunol ; 13: 838448, 2022.
Article in English | MEDLINE | ID: covidwho-1742220

ABSTRACT

Basophils play a key role in the orientation of immune responses. Though the interaction of SARS-CoV-2 with various immune cells has been relatively well studied, the response of basophils to this pandemic virus is not characterized yet. In this study, we report that SARS-CoV-2 induces cytokine responses and in particular IL-13, in both resting and IL-3 primed basophils. The response was prominent under IL-3 primed condition. However, either SARS-CoV-2 or SARS-CoV-2-infected epithelial cells did not alter the expression of surface markers associated with the activation of basophils, such as CD69, CD13 and/or degranulation marker CD107a. We also validate that human basophils are not permissive to SARS-CoV-2 replication. Though increased expression of immune checkpoint molecule PD-L1 has been reported on the basophils from COVID-19 patients, we observed that SARS-CoV-2 does not induce PD-L1 on the basophils. Our data suggest that basophil cytokine responses to SARS-CoV-2 might help in reducing the inflammation and also to promote antibody responses to the virus.


Subject(s)
Basophils/immunology , COVID-19/immunology , Interleukin-13/metabolism , SARS-CoV-2/physiology , B7-H1 Antigen/metabolism , Biomarkers/metabolism , Cells, Cultured , Humans , Interleukin-3/metabolism , Virus Replication
9.
J Asthma Allergy ; 14: 1511-1525, 2021.
Article in English | MEDLINE | ID: covidwho-1662468

ABSTRACT

BACKGROUND: Asthma is a chronic lung disease, which causes wheezing, tightness in the chest, shortness of breath and coughing. In the wake of coronavirus disease 2019 (COVID-19), which affect the lungs, asthma patients are at high risk. Embelin, a natural benzoquinone obtained mainly from Embelia ribes Burm, has excellent biological properties, including protection against acute asthma. However, since asthma is a chronic and multi-factorial inflammatory disease, asthma conferred by a single allergen in an animal may not be clinically significant. Therefore, the purpose of the current study was to evaluate the effectiveness of embelin against ovalbumin (OVA)-lipopolysaccharide (LPS)-induced severe airway inflammation in experimental animals and to investigate the plausible mechanism of action. METHODS: Rats (n=36) were divided into six groups. Group I served as a normal control. Groups II-VI were sensitised with severe allergens (OVA and LPS) on day 7, 14 and 21, followed by OVA and LPS challenge for 30 min three times/week for 3 weeks. Group II acted as an asthmatic disease control and received only vehicle. On the other hand, groups III-V received embelin (12.5, 25 and 50 mg/kg, P.O. respectively) while group VI received a standard dexamethasone (2.5 mg/kg, P.O.) for 15 days from day 27. Lung function parameters, including the respiratory rate, tidal volume and airflow rate were measured at the end of the experiment (day 42). The total and differential counts of leukocytes in the blood and bronchoalveolar fluid (BALF) were calculated. Th2-mediated serum pro-inflammatory cytokines such as interleukin (IL)-4, IL-5 and IL-13 levels were analyzed. At the end of the study protocol, the lung tissues were removed for a histopathology study. Additionally, a molecular docking simulation on embelin and standard dexamethasone was applied to support the in vivo findings. RESULTS: Significant inhibition of eosinophils, neutrophils, lymphocytes and monocytes in the blood and the BALF was seen in the groups, which received embelin (25 and 50 mg/kg) and dexamethasone (2.5 mg/kg). Moreover, the lung function parameters were normalised by embelin (25 and 50 mg/kg) treatment significantly. The lung histopathological changes confirmed the protective effect of embelin against severe airway inflammation. The docking findings indicated good binding efficacy of embelin to IL-13. CONCLUSION: Overall, our findings indicate that embelin can alleviate severe airway inflammation in OVA-LPS-induced model of allergic asthma occurring by suppression of Th2-mediated immune response. Due to its promising anti-asthmatic effect, it is recommended that embelin should be investigated in clinical trials against asthma. It should also be further explored against COVID-19 or COVID-like diseases due to its ameliorative effects on cytokines and immune cell infiltration.

10.
Expert Opin Ther Targets ; 26(1): 13-28, 2022 01.
Article in English | MEDLINE | ID: covidwho-1650476

ABSTRACT

INTRODUCTION: In COVID-19 pneumonia, there is a massive increase in fatty acid levels and lipid mediators with a predominance of cyclooxygenase metabolites, notably TxB2 ≫ PGE2 > PGD2 in the lungs, and 11-dehydro-TxB2, a TxA2 metabolite, in the systemic circulation. While TxA2 stimulates thromboxane prostanoid (TP) receptors, 11-dehydro-TxB2 is a full agonist of DP2 (formerly known as the CRTh2) receptors for PGD2. Anecdotal experience of using ramatroban, a dual receptor antagonist of the TxA2/TP and PGD2/DP2 receptors, demonstrated rapid symptomatic relief from acute respiratory distress and hypoxemia while avoiding hospitalization. AREAS COVERED: Evidence supporting the role of TxA2/TP receptors and PGD2/DP2 receptors in causing rapidly progressive lung injury associated with hypoxemia, a maladaptive immune response and thromboinflammation is discussed. An innovative perspective on the dual antagonism of TxA2/TP and PGD2/DP2 receptor signaling as a therapeutic approach in COVID-19 is presented. This paper examines ramatroban an anti-platelet, immunomodulator, and antifibrotic agent for acute and long-haul COVID-19. EXPERT OPINION: Ramatroban, a dual blocker of TP and DP2 receptors, has demonstrated efficacy in animal models of respiratory dysfunction, atherosclerosis, thrombosis, and sepsis, as well as preliminary evidence for rapid relief from dyspnea and hypoxemia in COVID-19 pneumonia. Ramatroban merits investigation as a promising antithrombotic and immunomodulatory agent for chemoprophylaxis and treatment.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Carbazoles/therapeutic use , Sulfonamides/therapeutic use , Thrombosis , Animals , COVID-19/complications , Chemoprevention , Humans , Inflammation/drug therapy , SARS-CoV-2 , Thrombosis/drug therapy , Post-Acute COVID-19 Syndrome
11.
Am J Rhinol Allergy ; 36(3): 313-322, 2022 May.
Article in English | MEDLINE | ID: covidwho-1605735

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses angiotensin-converting enzyme-2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) as a primary receptor for invasion. Cell entry by the virus requires the co-expression of these molecules in the host cells. OBJECTIVE: We investigated ACE2 and TMPRSS2 expression and localization in paranasal epithelium of eosinophilic chronic rhinosinusitis (ECRS) patients (n = 38), non-ECRS (n = 31), and healthy controls (n = 25). CRS inflammatory patterns are characterized by the type of cytokines; we investigated whether inflammatory endotypes are associated with cell-entry molecules, as this could be linked to susceptibility to SARS-CoV-2 infection. METHODS: The ACE2, TMPRSS2, and other inflammatory cytokine mRNA levels were assessed by quantitative RT-PCR. The localizations of ACE2- and TMPRSS2-positive cells were examined with immunofluorescent double-staining using laser scanning confocal microscopy (LSCM). RESULTS: The non-ECRS patients showed significantly increased ACE2 and TMPRSS2 mRNA expressions compared to the ECRS patients. The CRS patients' ACE2 and TMPRSS2 mRNA levels were positively correlated with IFN-γ (r = 0.3227 and r = 0.3264, respectively) and TNF-α (r = 0.4008, r = 0.3962, respectively). ACE2 and TMPRSS2 were negatively correlated with tissue eosinophils (r = -0.3308, r = -0.3112, respectively), but not with IL-13. ACE2 mRNA levels were positively correlated with TMPRSS2 (r = 0.7478). ACE2 and TMPRSS2 immunoreactivities were localized mainly in the epithelial ciliated cells, as confirmed by co-staining with TMPRSS2 and acetylated α-tubulin, a cilia organelle marker. Using LSCM imaging, we observed higher expressions of these molecules in the non-ECRS patients versus the ECRS patients. CONCLUSION: ECRS patients with type 2 inflammation showed decreased ACE2 and TMPRSS2 expressions in their sinus mucosa. ACE2 and TMPRSS2 regulation seems to be positively related to IFN-γ and TNF-α production in CRS patients; ACE2 and TMPRSS2 were co-expressed in the ciliated epithelium of their paranasal mucosa, implicating the paranasal epithelium as a portal for initial infection and transmission.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Angiotensins , COVID-19/genetics , Epithelium , Humans , SARS-CoV-2 , Serine Endopeptidases/genetics
12.
Int J Mol Sci ; 22(24)2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1595807

ABSTRACT

The IL-4 and IL-13 cytokine pathways play integral roles in stimulating IgE inflammation, with the IL-4 cytokine being a major cytokine in the etiology of thunderstorm asthma, atopic dermatitis, and allergic rhinitis. The increasing prevalence of thunderstorm asthma in the younger population and the lessening efficacy of corticosteroids and other anti-inflammatories has created a need for more effective pharmaceuticals. This review summarizes the IL-4 and IL-13 pathways while highlighting and discussing the current pathway inhibitors aimed at treating thunderstorm asthma and atopic dermatitis, as well as the potential efficacy of peptide therapeutics in this field.


Subject(s)
Allergens/adverse effects , Asthma/immunology , Dermatitis, Atopic/immunology , Interleukin-4/metabolism , Allergens/immunology , Asthma/drug therapy , Dermatitis, Atopic/drug therapy , Gene Expression Regulation/drug effects , Humans , Interleukin-13/metabolism , Molecular Targeted Therapy , Signal Transduction/drug effects
13.
Life Sci ; 283: 119871, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1336712

ABSTRACT

Non-communicable, chronic respiratory diseases (CRDs) affect millions of individuals worldwide. The course of these CRDs (asthma, chronic obstructive pulmonary disease, and cystic fibrosis) are often punctuated by microbial infections that may result in hospitalization and are associated with increased risk of morbidity and mortality, as well as reduced quality of life. Interleukin-13 (IL-13) is a key protein that regulates airway inflammation and mucus hypersecretion. There has been much interest in IL-13 from the last two decades. This cytokine is believed to play a decisive role in the exacerbation of inflammation during the course of viral infections, especially, in those with pre-existing CRDs. Here, we discuss the common viral infections in CRDs, as well as the potential role that IL-13 plays in the virus-induced disease pathogenesis of CRDs. We also discuss, in detail, the immune-modulation potential of IL-13 that could be translated to in-depth studies to develop IL-13-based therapeutic entities.


Subject(s)
Influenza, Human/immunology , Interleukin-13/immunology , Lung Diseases/immunology , Chronic Disease , Humans , Inflammation/immunology , Inflammation/pathology , Influenza, Human/pathology , Lung Diseases/pathology , Mucus/immunology
14.
Gene Rep ; 23: 101169, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1201594

ABSTRACT

BACKGROUND: It is necessary to assess the cellular, molecular, and pathogenetic characteristics of COVID-19 and attention is required to understand highly effective gene targets and mechanisms. In this study, we suggest understandings into the fundamental pathogenesis of COVID-19 through gene expression analyses using the microarray data set GSE156445 publicly reachable at NIH/NCBI Gene Expression Omnibus database. The data set consists of MCF7 which is a human breast cancer cell line with estrogen, progesterone and glucocorticoid receptors. The cell lines treated with different quantities of Cissampelos pareira (Cipa). Cipa is a traditional medicinal plant which would possess an antiviral potency in preventing viral diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: Utilizing Biobase, GEOquery, gplots packages in R studio, the differentially expressed genes (DEGs) were identified. The gene ontology (GO) of pathway enrichments employed by utilizing DAVID and KEGG enrichment analyses were studied. We further constructed a human protein-protein interaction (PPI) network and performed, based upon that, a subnetwork module analysis for significant signaling pathways. RESULTS: The study identified 418 differentially expressed genes (DEGs) using bioinformatics tools. The gene ontology of pathway enrichments employed by GO and KEGG enrichment analyses of down-regulated and up-regulated DEGs were studied. Gene expression analysis utilizing gene ontology and KEGG results uncovered biological and signaling pathways such as "cell adhesion molecules", "plasma membrane adhesion molecules", "synapse assembly", and "Interleukin-3-mediated signaling" which are mostly linked to COVID-19. Our results provide in silico evidence for candidate genes which are vital for the inhibition, adhesion, and encoding cytokine protein including LYN, IGFBP5, IL-1R1, and IL-13RA1 that may have strong biomarker potential for infectious diseases such as COVID-19 related therapy targets.

15.
Gene Rep ; 22: 101012, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002539

ABSTRACT

Recently an outbreak that emerged in Wuhan, China in December 2019, spread to the whole world in a short time and killed >1,410,000 people. It was determined that a new type of beta coronavirus called severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) was causative agent of this outbreak and the disease caused by the virus was named as coronavirus disease 19 (COVID19). Despite the information obtained from the viral genome structure, many aspects of the virus-host interactions during infection is still unknown. In this study we aimed to identify SARS-CoV-2 encoded microRNAs and their cellular targets. We applied a computational method to predict miRNAs encoded by SARS-CoV-2 along with their putative targets in humans. Targets of predicted miRNAs were clustered into groups based on their biological processes, molecular function, and cellular compartments using GO and PANTHER. By using KEGG pathway enrichment analysis top pathways were identified. Finally, we have constructed an integrative pathway network analysis with target genes. We identified 40 SARS-CoV-2 miRNAs and their regulated targets. Our analysis showed that targeted genes including NFKB1, NFKBIE, JAK1-2, STAT3-4, STAT5B, STAT6, SOCS1-6, IL2, IL8, IL10, IL17, TGFBR1-2, SMAD2-4, HDAC1-6 and JARID1A-C, JARID2 play important roles in NFKB, JAK/STAT and TGFB signaling pathways as well as cells' epigenetic regulation pathways. Our results may help to understand virus-host interaction and the role of viral miRNAs during SARS-CoV-2 infection. As there is no current drug and effective treatment available for COVID19, it may also help to develop new treatment strategies.

SELECTION OF CITATIONS
SEARCH DETAIL